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A B S T R A C T  

The class of stable Banach spaces, inspired by the stability theory in mathemati- 
cal logic, was introduced by Krivine and Maurey and provided the proper 
context for the abstract formulation of Aldous' result of subspaces of L'.  In this 
paper we study the wider class of weakly stable Banach spaces, where the 
exchangeability of the iterated limits occurs only for sequences belonging to 
weakly compact subsets, introduced independently by Garling (in an earlier 
unpublished version of his expository paper on stable Banach spaces brought 
recently to our attention) and by the authors. Taking into account Rosenthal's 
application of the study of pointwise compact sets of Baire-1 functions 
(Rosenthal compact spaces) in the study of Banach spaces (for which l' does not 
embed isomorphically) and of the study of Rosenthal compact sets by Rosenthal 
and Bourgain-Fremlin-Talagrand, we prove the following analogue of the 
Krivine-Maurey theorem for weakly stable spaces: I f  X is infinite dimensional 
and weakly stable then either I p for some p >= 1 or c,, embeds isomorphically in X 
(§1). Garting (in the above reference) proved this result under the additional 
assumption that X* is separable. We also construct an example of a Banach 
space X which is weakly stable, without an equivalent stable norm, and such 
that l -~ embeds isomorphically in every infinite dimensional subspace of X (§3). 

§1 

1.1. DEFINITION. A separable Banach space X is called weakly stable if for 
every weakly compact subset K of X, every two sequences (x,,), (y,,) in K and 
every two ultrafilters 0-// and °V on the natural numbers the equality 

holds. 

lim lim II x,, + ym I1 = lim lim H x,, + y,. H 
n m rrl n 
o// 'V t "  o// 

This is a generalization of the notion of a stable Banach space, introduced by 
Krivine and Maurey in [10], in which the above equality holds for any two 
norm-bounded (and not necessarily weakly convergent) sequences (x.),  (ym). 
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Thus every stable space is weakly stable. It is also clear that every weakly 

stable, reflexive space is stable. 

It is known that c,, is not stable, and in fact that c,, is not stable under any 

equivalent norm. It will be proved below (cf. Corollary 2.5) that c,, and c are 

weakly stable. We note Garling has proved that co is w-stable in an earlier 

version of [4], mentioned above. 

On the other hand c,7" is not weakly stable (as remarked in 2.7 below). 

The main result in this section is the following: 

1.2. THEOREM. If X is a weakly stable Banach space of infinite dimension, 

then for every e > 0  X contains a subspace (1 + e)-isomorphic to I p for some 

l <= p < oc or to c~. 

This theorem is a generalization of the celebrated theorem of Krivine-Maurey 

[10] for stable spaces, originally proved by Aldous [1] for L'[0,1] using 

probabilistic methods (random measures). The tools that we will use to prove 

our theorem are those introduced by Krivine and Maurey in [10] and the 

techniques of Rosenthal in [15]. We omit all details of proofs, where they are 

similar to those of the paper of Krivine-Maurey [10]; our proof of Theorem 1.2 

is modeled after the proof given in Krivine [9]. 

We will need the following: 

1.3. DEFINITIONS. Let X be a separable Banach space. 

(a) A type on X is a function ~-: X--~ R + for which there are a norm-bounded 

sequence (x.) in X and an ultrafilter ~ on the set of natural numbers such that 

"r (x )=l iml l x+x , , l l  for x ~ X .  
7, 

(b) The set of all types on X is denoted by ~ (X) ;  S ( X )  is a topological space, 

considered as a subspace of (R+) " with Cartesian (pointwise) topology. 

(c) For K C X we set 

J ( X ,  K) = {~" E S(X):  there are a sequence xn E K and an ultrafilter 

such that ~-(x) = lim ]Ix + x, II for x 
n / 

(d) We set 

J-w(X) -- (_J{J-(X, K): K weakly compact subset of X}. 

An element of ~-w(X) is called a weak type on X. Using the separability of X and 
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Eberlein's theorem it is easy, passing to subsequences if necessary, to dispense 

with the use of uitrafilters and to see that 

J-~(X) = {~" ~ J-(X): there are a sequence (x,)C X and y E X  such  that 

lim x, = y weakly and r(x)  =limllx,  +xl l  for x Ex}. 
We also set 

Sw,(X) = {~- E 3w(X): there are a sequence (x°)C X such that lim x, = 0 

weakly and ~'(x) = lim [Ix,, + x [[ for x E X } .  

An element of ~w.(X) is called a weakly null type on X. 

1.4. For ~" E ~-(X) and A E R, we recall the definition of AT E J-(X), given by 

Krivine-Maurey [10]: 

A~-=0 if A = 0 ,  

(A~ ' ) (x )= IAI r (A)  i f A / 0 f o r x C X .  

We note that if ~- E Jw(X),  resp. J-w.(X), then A~- E Sw(X), resp. Sw.(X), for 

any A ~ R. 

1.5. DEFINITIONS. Let X be a weakly stable Banach space, and let o-,~-E 

~w(X). 
We define [~r, 7] and o-* r. Since or, ~" C J-w(X) there are weakly compact 

subsets K, L of X, sequences (x.)C K, (y,.) C L, and ultrafilters ~, T" on the set 

of natural numbers, such that 

~(x)=limllx.+xl[, r(x)=limllYm+xll for x C X. 
n m 

• ,~1 v 

(a) We set 

[o-, 7] = lim lim Hx. + y,. I1. 
n m 

Ull ~" 

The fact that X is weakly stable implies that the operation 

[ . , , ] :  3-.(x) × ~w(X)~R 

is well-defined. 
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(b) For  y U X we set 

(o'* y ) ( x ) =  ~r(y + x)  

and generally we set 

for x ~ X, 

is well-defined. 

1.6. PROPOSITION. Let X be a weakly stable Banach space. 

(a) I f  o', "c E J-w(X), then o" * r E 3w(X) .  

(b) I f  ~r, ~ ~ 3-w.(X), then o" * "c @ 3-w.(X). 

PROOF. (a) Let (x,,), (y,,) be sequences in X, x ,y  ~ X ,  such that 

weak-lim,, x, = x, weak-l im,  y, = y, ~r(z) = lim,, I] z + x,, ]], r ( x )  = lim,, ]l z + y,, II 

for z C X .  We choose a countable  dense set D ={d~,d~ . . . . .  dk . . . .  } in X. 

Inductively we construct  a sequence n~ < n: < - • • < nt < • • • of natural numbers  

such that 

[(~r * "r)(& ) -Hx , ,  + y,, + & [[ [ ~ l / l  

Then 

( ~ r * z ) ( & ) = l i m ] l d ~ + x ° , + y . , I  I for k = l , 2  

Since a type, in particular o-* z, is a uniformly cont inuous  function on X, it 

follows that 

( t r . z ) ( z ) = . l i m l f z + x , , + y , , [  I for z E X .  

for k = l , 2  . . . . .  l and 

I = 1 , 2  . . . . .  

(or * ~') = lim (or * y,, ), 

where the limit is taken in the (pointwise) topology of ~-(X). The equali ty 

( ~ r * z ) ( x ) = l i m l i m l l x , , + y , , + x l l  for x E X  
n m 

holds. 

The fact that X is weakly stable implies that the opera t ion  

• : J -~ (x )  x ~ - ~ ( x ) ~  9 - ( x )  
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Of course weak-lim~ (x,, + y,,) = x + y. Thus o. * ~" ~ J~  (X). 

(b) follows f rom the proof  of (a). 

1.7. DEFINITION. A type o. ~ J ( X )  is symmetr ic  if o.(x) = o . ( -  x)  for  x E X. 

We denote  by 3~ (X) ,  3 ~ , ( X ) ,  the set of all weak and symmetric ,  weakly null 

and symmetric ,  respectively,  types of X. 

1.8. DEFINITION. Let  X be weakly stable, and or ~ f f{(X) .  T he  spreading 

model  of o- is a Banach space Y D X, 

Y spanned by X U {~:k : k = 1,2 . . . .  }, 

and such that 

I Ix+AI~,+' ' '+Ak~k[[=(A,O.* ' ' '*Ako. ) (X)  for  k = 1 , 2 , . . . ,  

A~ . . . . .  A k E R ,  x E X .  

1.9. LEMMA. Let X be weakly stable and o. ~ J~ (X) .  Then the spreading 

model Y = [X U {~k : k = 1,2 . . . .  }] of o. always exists, is unique up to isometry, 

and II x + A~, + . . .  + A~k [I is invariant under permutations of the Ai' s and under 

change of L to +-L. In particular, the sequence (~k) is 1-unconditional. 

1.10. DEFINITION. Let  X be weakly stable and or E ~-~(X). Then  o. is called 

an /P-type, for some p_>- 1, resp. co-type if ao.*/3o" = ( a "  +/3")~/"tr, 

resp. ao. */3o" = max(a,/3)o-, for  a, /3 >_- 0. 

1.1 l. LEMMA. Let X be weakly stable and o. E ~-~(X), o .#  0. Then o. is an 

l"-type for some p >= 1 or a c.-type if and only if for all a >-_- 0 there is/3 >= 0 such 

that o. * ao. =/3°'. 

(This is entirely analogous to L e m m a  III.1 in [10], making use of a result by 

Boehnenblus t  [2].) 

1.12. LEMMA. Let X be weakly stable, o-~ 3-~(X), o. an lP-type for some 

p _-> 1, resp. a c,~-type, realized by the sequence (x,)  in X. 

Then there is a subsequence (y,,) of (x, ) equivalent to the usual basis of l p, resp. 

of co. In fact, 

J:or all sequences (A,,) of real numbers eventually zero, and k = 1,2 . . . . .  
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(This is entirely analogous to Theorem III.1 in [10], and is based on a 

compactness argument using Ascoli's theorem.) 

1.13. PROPOSITION. If X is a separable Banach space and l~'7 ¢ X, then Jw,(X) 
is a closed subspace of J-(X) (in its pointwise topology). In particular, ,Y,.(X) and 

J':~o(X) are locally compact, ~-compact spaces. 

(This follows from Lemma 3.2 in Rosenthal [15].) 

1.14. DEVINmON. Let X be weakly stable. 

(a) A subset ~ of $-~.(X) is called a conic class if ~ #  0,  (~# {0}, ~ is a closed 

subset of S~,(X),  )~o- E ~ for ~ ~ c¢ and 2~ E R with A => 0, and ~r • ~- E ~ for 

(b) If ~ is a conic class in 9-~,(X), a E %  a,/3 > 0  then o- is called 

(a,/3, c¢)-approximating type if for every e > 0 and every neighborhood V of 

there is ~- ~ (g n V such that 

T(~ * ~ - ) ( x ) -  ([3~-)(x)f-<_ 

We set 

for x ~ X .  

F~.~,, = {~r ~ c¢: cr is (a,/3, c¢)-approximating type}. 

1.15. COROLLARY. Let X be weakly stable and 11 ~74 X. Then every conic class 
OT~ contains a minimal conic class in gl w.(X). 

(Zorn's lemma argument, possible in presence of compactness.) 

1.16. COROLLARY. Let X be weakly stable 1~54 X, let %o be a conic class in 

J - ~ ( X )  and a >0.  Then there is [3 > 0  such that F¢,,~,~,~ O, F,,.tv~,~ {0}. 

(The proof is analogous to that of Lemma IV. 4 in [10] and uses the symmetry 

of the sequence ~:k (Lemma 1.12) in the spreading model of a weakly null, 

symmetric type and Proposition IV.1 in [10].) 

1.17. LEMMA. Let (a~,)~.-, be given real numbers for all i < j and suppose that 

lira lira a ,  = a .  
i j 

Then there is an increasing sequence n (1) < n (2) ( • • • of positive integers so that 

lira anti),~j)= a. 
i<j 
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(This is essentially a reformulation by Rosenthal [15] of Ramsey's partition 

principle in a form suitable for analysis.) 

1.18. LEMMA. Let X be a Banach space such that l ~ does not embed in X, and 

let (k~i)~,;=7 be elements in X such that lim~ lim;k~; = 0 in the weak topology of X. 

Then there are (io,j,)°-~ in i, < j ,  for all n and i~--,oo as n-->oo such that 

lima ki..,o = 0 in the weak topology of X. 

(This has been proved by Rosenthal [15], Lemma 3.3, using Ramsey's 

principle (Lemma 1.17 above) and the results for compact spaces of Baire-1 

functions by Bourgain-Fremlin-Talagrand [3] and applications of such spaces on 

Banach spaces that do not contain isomorphically 1 ~ by Odell-Rosenthal [13].) 

1.19. PROPOSmON. Let X be weakly stable, such that l'~:¢ X, and let cr 

3-w(X). Then the function 

given by ~¢,, (7) = [~r, "c] is continuous. 

PROOF. Let (z.) be a sequence in ~-wo(X), ~- E ~-wo(X), and ~-. ---> z pointwise, 

and we wish to prove that [~r, z.]---~ [~r, ~']. It is enough to prove that for every 

subsequence (~%) of (z~) there is a further subsequence (z.~,) such that 

[", [o,, d .  
Without loss of generality assume that (r,,) is the original sequence (~,). Since 

~'o E g-w~(X), there is a sequence (Y7)7=. in X such that lim/y~ = 0 weakly in X 
and z~(x)=l im;[[y?+x[]  for x E X  for all n = 1,2 . . . . .  We then have that 

lira o'(y~) = [or, z.] for n = 1 , 2  . . . . .  i 

We may assume that 

(1) I[~r, z,] - tr(yT) =< 1/n for j = 1,2 . . . .  , n = l , 2  . . . . .  

We also have 

T(x) = lim r. (x) = lim lim II Y7 + x II for x ~ X. 
n n j 

From Lemma 1.17 (Ramsey's principle) and the separability of X there is an 

increasing sequence m(1) < m(2) < . . .  such that 

, .~i)  [ "r(x) = li<In/ [Ix + y,,,,,, for  x E~ X. 
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r, , ,  ,,"1~ = 0 weakly in X. It now follows f rom Rosenthal ' s  It is clear that lim~ .h. jy, ,( j)  

L e m m a  1.18 that there  is a sequence (it,j~)~'=~ with it <j~ for l =  1,2 . . . .  and 
m ( i / )  

i, --~ oc as l --~ ~ such that limt y,,(~,) = 0 weakly in X. It is then clear that we have 

m ( i l )  I 
- : ( x )= l im l l x+y , , ( j , )  for x ~ X ,  

hence 

From (1) we also have 

= l i  m " ~(,,), ~'] tr t Y ,,(/, ) ). W 

m ( i  t }_ i 1 

][or, 1",,(i,)]- o'(y,,(j,)) T ~ re(i,) ' 

hence finally lim~ [m r¢,,,,~] = [~r, r] ,  as required.  The  proof  of the proposi t ion is 

complete .  

1.20. REMARK. For  x @ X we set 

~-w,, (x)  [o" ~ ~-(X): there  is a sequence (x,,) in X such that 
k 

x,, = x and o-(z) = lim II z + x, II for  z E x [ .  weak-lim 
l i  tt J 

The  following s ta tement  is proved exactly as Proposi t ion 1.19: 

Let  X be weakly stable, l'SZ, X, cr ~ ~-,~(X), and x E X. Then  the function 

,¢,,: 3wx (X)--> R 

given by q~,,(r)= [tr, r ]  is continuous.  

Let X be weakly  stable, and l ~ ~z, X. Then the convolution 1.21. PROPOSITION. 

function 

is separately continuous. 

( Immediate  from Remark  1.20.) 

We have two consequences  of this proposi t ion.  

1.22. COROLLARY. Let X be weakly stable, l ~ ~ X, and let ~ be a conic class in 

J - ~ ( X )  such that there are a, [3 > 0 and tr ~ ~, cr~ O, (r (a, ~, <~)-approximating 

type. Then F,,.~.e. is a conic class. 
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(It follows from Proposition 1.21; cf. Lemma IV.5 in [10].) 

1.23. COROLLARY. Let X be weakly stable, l ~ '74 X, and let qg be a conic class in 

J-~o(X). Then there exists a dense set D of ~ such that every (~r, r) ~ D × cg is a 

point of continuity of the convolution 

• : ~ × qg-+ ~g. 

(This is an immediate consequence of Proposition 1.21 and Namioka's 

theorem [11] on separately continuous real-valued functions: recall that cg is a 

locally compact and o--compact space.) 

1.24. COROLLARY. L e t X b e  weaklystable, l ~ 4 X ,  q~aminimalconicclassof  

J ~ , ( X )  and ce > O. Then there is fl > 0 such that cg = F~.~..~. 

(Immediate from Corollaries 1.16 and 1.22.) 

1.25. COROLLARY. Let X be weakly stable, I~'-/4 X, and qg a conic class in 

3-~,(X). Then cg contains an lP-type for some p > 1 or a co-type. 

(It follows from Corollaries 1.15, 1.24, 1.23 and Lemma 1.11.) 

PROOF OF THEOREM 1.2. Immediate from Corollary 1.25 and Lemma 1.12, 

and James' result [8], stating that if l'~--*X and s > 0  then there is a (1 + e)- 

embedding of I ~ into X. 

1.26. REMARK. Recall that a Banach space X has Schur's property if every 

weakly convergent sequence in X is norm convergent. It follows immediately 

from the definitions that 

every Banach space that has Schur's property is weakly stable. 

It follows from Theorem 1.2 that if X has Schur's property then l ~ ~ X. (This 

is a result of Rosenthal in [14].) 

§2. Krivine and Maurey have proved in [10] (Theorem II.1) that the/p-sum 

(1 5 p < + ~) of stable Banach spaces is stable. In the same way, we can prove 

that the /e-sum of weakly stable Banach spaces is weakly stable. 

In the present section we prove that the co-sum of weakly stable Banach 

spaces need not be weakly stable. We state a general theorem of interchange of 

double limits (whose proof is similar to Theorem 5 in [12], and is therefore 

omitted), and then we establish a condition for the preservation of the property 

of weakly stable Banach space in co-sums. 
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2.1. PROPOSITION. Let X be a weakly stable Banach  space, and we set 

Y = (OE,EN X~)o, with X~ = X [ o r  i E N. I f  Y i s  weakly stable then every non-zero 

weakly null symmetric type of X is a co-type. 

PROOF. Let  r E 3-~,(X)\{0}, and let (X,),EN be a sequence in X such that 

w-lim, x° = 0 and r ( x ) =  lim, [Ix, + x !1. We assume, without  loss of generality,  

that  1"(0) = 1. 

Let  x E X. We will prove that (a~" * /3 r ) (x )  = (max{a,/3}- r ) ( x )  for a, /3 =>0. 

We first assume that a ~ 0 ,  say a > /3  =>0. We define two sequences  (yt)~N, 

(Zk)k~N as follows: 

y ~ ( i ) = 0  for i F l ,  and 

yt ( l ) = ax, + x ; and 

zk(i)=/3Xk f o r i < = k ,  

= 0 for i > k. 

It is clear that w-limt y~ = w-limk zk = 0. We also have 

lim lim II y~ + zk II = max{/3, ( a t  */3r)(x)},  and 
I k 

lim lim II y, + zk II-- max{/3, (a~-)(x)}. 
k I 

Since Y is weakly stable, we have 

(1) max{/3, ( a t  */3z) (x)} = max{/3, (aT)(x)}. 

Fur the rmore ,  

(2) (a~-)(x) >/3.  

In fact, if (ar)(x)<=/3, then ( a r ) ( - x ) < = / 3 ,  since r is symmetric ,  hence 

lim. I[ ax.  + x tl <=/3, limn [I ax.  - x t[ <-/3 ; thus a =</3, a contradict ion.  

F rom (1) and (2) we have that 

( a t  * /3 r ) (x )  = (a~')(x)  = (max(a , /3 ) .  ~')(x). 

Finally, if a =/3, then we set /3. = a - I/n,  n ~ N, and we have 

(a~'*/3.~')(x) = ( a z ) ( x )  for  n E N ,  

hence 

(a~" * a ~ ) ( x )  = (a~)(x) .  
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The proof of the proposition is complete. 

2.2. COROLLARY. The space Y = (@ E~EN X~ )o, with X~ = l" for i E N, is not 

weakly stable, i [p  > 1. 

2.3. THEOREM. Let (X~)~  be a family of weakly stable Banach spaces, set 

X = ( O  E~X~)o, Z = (@E~jX~)~, let u E Z \ X ,  set Y t o  be the linearspan in Z 

of X U { u }, let K be a weakly compact subset of Y, y., z. E X, c., d. E R with 

c.u + y., d.u + z. ~ K for n = 1,2 . . . . .  ~ and °V ultrafilters on the set of natural 

numbers, set s. = (I[Y.(/)N),~- t~ = (]{z~(i)l[),~ and assume that 

weak-lim s., weak-lim t. E co(I). 

Then 

lira lim It c.u + y~ + dmu + zm I1~ = lim lim II c.u + y~ + dmu + z., I1~. 
n m m n 

Theorem 2.3 is a generalization of Theorem 5 in [12], which forms the 

essential part of the proof of non-existence of separable stable spaces containing 

isomorphic copies of all separable stable Banach spaces. (This is a result proved 

independently, in a different manner, by Guerre  [5] as well.) 

As special cases we get immediately. 

2.4. COROLLARY. Let (X~),E~, X, Y and Z be as in Theorem 2.1. I f  X~ has 

Schur' s property for i E I, then Y is weakly stable. 

2.5. COROLLARY. C0, C are weakly stable Banach spaces. 

REMARK. The following remark is contained in an earlier version of [4]: For 

every e > 0 there is a norm II1" Iit on co, (1 + e)-equivalent with the usual norm 

I1" Iio o n  c,,, s o  that (co, II1" III ) is not weakly stable. In fact, for x = (x,)  ~ c., set 

emax{Ix2kl+lx2,- ,  IIIx tll =llxll,,+  I k < l}. 

If we denote by (e,) the usual basis of co, then 

lira lira II e~ + e2,+, II = 1 + e,  
k I 

lira lim + e ,+,II = 1 + e l 2 .  
I k 

2.6. PROPOSITION. Let X be a separable Banach space, such that Co'76 X, and 
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set Y = ( ~  E,~N X~)o, with X~ = X for i ~ N. The following two statements are 

equivalent: 

(i) Y is weakly stable; 

(ii) X has Schur's property. 

PROOV. (i) ~ (ii). If X does not have Schur's property, then there is a 

non-zero, weakly null symmetric type on X. By Proposition 2.1, this type is a 

c0-type. Hence, by Lemma 1.2, co embeds isomorphically in X. 

(ii) f f  (i). By Corollary 2.3, Y is weakly stable. 

2.7. EXAMPLE. We will show that the space c f  of all real valued continuous 

functions on the ordinal space oJ -~ vanishing at ~ is not weakly stable. Since 

co = • X,, , 
n = 1 (I 

where X. is isometrically identified with the space of all continuous functions on 

{ a ; ( n - 1 ) w  < a =~ nw}, in turn isometric to the weakly stable space c for 

n = 1,2 . . . . .  it follows that Theorem 2.1 cannot be improved significantly. 

We define sequences (x~)L,, (Yk)~=, in e f  as follows: 

( x , ( n ) ) ( a )  = o 

y~(n) ( ,~ )  = 0 

=1  

= 0  

if n =<1 

=1  if n<=l 

= 0  if n > l ;  

if n ~ k and 

if n ~ k and 

if n > k .  

and a ~  ( n -  1)~o + l, 

and a = ( n - 1 ) o ~ + l ,  

(n - 1)~o < a < (n - 1)oJ + k, 

( n - 1 ) ~ o + k  ~ a  ~ no~, 

Then lim, xl(n) ( a ) = O = l i m k y k ( n ) ( a )  for every ( n - - 1 ) o ~ < a  <--nw, n = 

1,2 . . . .  , hence x~---~0, y~--->0 weakly in cO". 

We note that 

{Ix, + yk{I = 1 if l <  k, 

= 2  if l > k .  

Hence, lim, lim~ [Ix, + yk II = 1 ~ 2 = lim~ lim, {[x~ + yk II. 

§3 

AN EXAMPLE. In this section we will prove the existence of an infinite 

dimensional Banach space X which (a) is weakly stable, (b) does not admit an 
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equivalent stable norm (hence it is not reflexive), and (c) for every e > 0 l -~ 

embeds (1 + e)-isomorphically in every infinite dimensional subspace of X. 

The space X has a norm that is.a variant of the norm of James'  space, given in 

[7]. The existence of a space X with these properties shows that the concept of 

weakly stable Banach spaces is a proper  generalization of the concept of stable 

spaces, even in the absence of any embedding of Co. 

3.1. Preliminaries on Complete Minimal Systems. Given a sequence (x,) in a 

normed space X, we denote by [(x,)] its closed linear span. 

A sequence (x,) in a Banach space X is a complete minimal system if 

X = [(x,)], and 

x.E[(x,.)~=I..,,,.] for n = 1,2 . . . . .  

The Hahn-Banach theorem implies that a sequence (x.)  is a complete minimal 

system for the space X if and only if [(x.)] = X, and there is (x*)C X* such that 

x*(x . )  = ~5..,. for n, m = 1,2 . . . . .  A sequence ((x., x*)) as above is said to be a 

biorthogonal system. For such a system ((x., x*)) and for m E N  we define 

Pro: X - - ~ X  by Pm(x)=E?=lX*(X)X~. 
It is clear that P,, defines a bounded projection on the space [(x,)7'=~] and that 

Ker P,, = [(x,)~=,.+~] = X~, for m = 1,2 . . . . .  

Hence, an element x E X belongs to X,. if and only if x*(x) = 0 for all i =< m. 

Using the above remarks it is easy to prove the following 

3.2. PROPOSmON. Let (x, ) be a complete minimal system for a Banach space 
X. Then the following hold: 

(a) If  (z,) is a sequence in X equivalent to the usual basis of I p, 1 <= p < oo, or of 
co, then there exists a sequence ( w, ) of blocks of (x, ) which is also equivalent to the 
basis of I e, 1 <= p < oo, or of Co, respectively. 

(b) If (z.) converges weakly to O, then there exists a subsequence (z,,)~=l of 

(z,) and a sequence of blocks (Y,S=I of (x,) such that 

lim I l y , , -  z.JI  = 0. 
k 

(The simple proof of Proposition 3.2 is omitted.) 

3.3. Definition of the Norm of the Space X. We denote by Y the linear space 

of all real sequences (x (0)=  0, x(1) . . . .  , x(n) . . . .  ) that are eventually zero. 

For x ~ Y we define 
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IlXll ~ g a p  ( ~  (X(pi+l)--x(pi))2~ 1/2 
Pl<p2<'"<pk i = 1  pi+l --p, / " 

It is clear that I1" II defines a norm on Y and we denote by X the completion of 

the normed space (Y, I1" II). 

We denote by e,, n = 1,2 . . . .  the vectors of Y which vanish everywhere 

except for the nth  term, where e, (n) = 1. As we will show, the sequence (e.)  is a 

complete minimal system for X, which however fails to be a basis. 

Let us note that for every n = 1,2 . . . .  the vector z. = ET=~ e, is easily seen to be 

of norm equal to ~/2, hence the sequence (z ,)  is norm-bounded.  

3.4. PROPOSITION. For n = 1,2 . . . . .  we define the linear functional e * : Y--~ R 

with the rule e * ( x ) =  x ( n ) .  Then e* is bounded and in fact  Ile*]l = n "2. 

PROOF. We notice first that if x ~ Y and ]lx[l= < 1, then l x (n ) l  =< n m. 

To see this we consider the partition 0 = p~ < P2 = n ; it follows that 

hence 

Ix(n)l_--< n"2. 

Thus the functional e* is bounded and He*H= < nm. 

The converse inequality follows immediately from the next lemma (which 

incidentally is not needed for the proof of the claimed properties for X). 

3.5. LEMMA. For all e > 0 and  n E N there exists x..~ ~ Y such that 

Ilx..~ll<-_l/nl'2+e and x , , , ( n ) = l .  

PROOF. We choose k E N  so that 

( 1 1 , ' / 2 1  
+ - - /  < -..z__- .4_ 

k /  = n ,/2 - e .  

Next we note that there is m E N such that for 11 =< n and lz =< k, the following 

inequality holds: 

m 1/2 ,~ ( n  - -  l l )  2 ( k  - 12) 2 
- -  211/2 JV 2 1/2 - n t~ k 12 

We define now the following element x,., of Y: 
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/ 
x,.~(l) = ~  f o r / = 0 , 1 , 2 , . ,  n, 

= 1  for  l = n + l ,  

k- l+(n+l)  
k 

= 0  f o r l > n + k .  

f o r l = n + 2  . . . . .  n + k ,  

CLAIM. IlX.,e [1 <- (1/n + 1/k)lC 

I ndeed ,  choose  pl < p2 < • • • < p~ a finite sequence ,  so that  

(x°,~ ( e , + , ) -  x , .~  (e,))2] ''~ 
pi+,  - pi  I 

W e  note  that  there  is no i < s so that  pi =< n and p,+, > n + 1. Next  let  us d e n o t e  

by  io, jo the  grea tes t  index so that  p~,, < n and the smal les t  index with n + 1 _-< pj.  

respect ive ly .  Then  since the  pa r t i t ion  p, < p2 < • • • < p~ real izes  the  no rm of  x .... 

we mus t  have that  p~,, = n and Pi, ,  = n + 1. 

Hence ,  the  sequence  p, < pz < ' ' "  < p~ has the  form 

p ,  < p 2  < • • • < p i .  : n < p i , , + l  < " " " < P i , ,  : n + r n  < • • • < p , ,  

and 

n i=n+m 

Final ly  we get  that  

(I+±] 
IIx°'It  ,n kJ ' 

proving  the claim. 

The  proofs  of L e m m a  3.5 and of P ropos i t ion  3.4 are  now comple te .  

3 .6 .  PROPOSITION. The space X is not reflexiue. 

PROOF. Cons ide r  the  sequence  (z , ) ,  whe re  z.  = E['=~ e~. As  we have no t iced  

in 3.3 this sequence  is no rm b o u n d e d .  W e  cla im that  no subsequence  of  ( z . )  is 

weak ly  convergent .  A s s u m e  on the con t r a ry  that  there  exist  x E X and a 

subsequence  (z,~) such that  

w-lira z,~ = x. 
k 
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We remark  that for all n = 1,2 . . . .  e * ( x )  = 1 and since Ile*ll = 1, we get IIx II ~ 1. 
_ _ N ' m  Choose  xl E X such that ]] x - x, II < ~ and x,  - ~ = ,  me, with a , / 0  and c ~ / ~ / f o r  

every i / j ,  1 _-< i, j -< rn. Since 1 _-< 11 x I1-<- x/~ we have 3 < II x, II =< x/~ + ~. Also, for 

all l <-_i <=m, 

Io,, I _-< ",/i(',/5 + b _-< ,,/~(',/~ + ~,). 

Let  p~ < p2 < ' ' "  < pk N m + 1 be the parti t ion that realizes the norm of the 

e lement  x~, i.e. 

tlx, 
\ i =  1 p i + l  - -  p i  / 

• , l N i = k - 1 )  s o  that  We choose 0 < e < mm(~. ~1 c~ .,+, - c~ p,l: 1 < 

( l lx,  lt 2 - 1 6  x / m e ( r n  + 1)) ';2 > IIx~ll-~. 

- = v ' ,  /3ie~. Then  and we choose  x2 E X such that Hx x~ll < e / X / m  + 1 and x_, _~=, 

I I x , -  x ,  ll--< IIx - x, ll ÷ IIx - x2ll < '  + ~  = ~. 

We remark  that 

[e~,(x - x2)[ = [e~, ( x ) -  G,(x2) [ = [1 -/3p,[ 

- - < l l e ; l l ' l l x  - x:l l  -< ' , /p ,  • X / m - ~ i  --< e for every 1 =< i -_< k. 

Hence  we have 

R ~2\ ~/2 
i ix,-x:l l=> ( ~  ((~,,.,-~,,)+(~,,-,-,,+,-) 

\ i= I pi+l - p, 

x i=~ pi+l - -  pi 

= ( ~ ( a p , + , - a e , ) 2 +  4 ,  2 '-'._.y 1 

~;=~ P~+~-p; ;=l p~+~-p; 

/ ( a , , , + , -  o~,,,) ~ 
i - I  p. . I -p i  

g > ( (~.'*___z'- a2,)~ 
i=1 pi+l - pi 

1 > 3  1 -- (11 x, II 2 - 16e V'm(m + 1)) '`2 > II x, II-  ~ = ~ - ~ = I, 

a contradict ion proving the proposi t ion.  

k - I  

i = l  pi+l--p, / 

k-, 1 ~,) '-" 
8 ~ V m ( V i + ~ ) ~  - 

i= l  p i + l  

16e %/m(m + I)),/2 
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3.7. LEMMA. Given x = Y~'=~ A,e, an element of Y, there exists m = re(x) ,  

m ~ N, such that for all y E Y, with ]1Y ]1 <= 1, and y = E7 . . . . .  1 c,e,, we have 

]IX + y I] = (11 x II 2-)t- [I Y !12) t/2" 

We need the following observa t ion :  

3.8. SUBLEMMA. I[ (a.),  (b.), (c.) are three sequences of real numbers with 

b. > 0, l im.  [a.  [=  + 0¢ = lira. b.,  (c°) and (a~./b.) bounded sequences and e > 0, 

then there is M ~ N so that 

2 

(*) ( a " + ( " ) 2 < ~ " + 8 - -  form>=M, n = 0 , 1 , 2 , .  
m + b .  "" " 

PROOF OF SUBLEMMA 3.8. We  notice first that  if (*) holds for  the pair  (n, m) ,  

then actually (*) holds for all pairs (n, m ' ) ,  with m' >-_ m. 

The  lef t -hand side of  (*) has the fo rm 

C ~ + l  
2 h a .  

a__.. d, where  d, = -  
b. ' m 

- - + 1  
b, 

Clearly,  (d , )  converges  to 17 hence for  m = 1 there  exists no such that  for  all 

n > n o w e  have  

(c° + ao) 2 a~ 
l + b .  < ~ - +  e. 

It  is obvious  that  for  any n @N there  exists re(n) such that  the pair  (n, m(n ) )  

satisfies (*). 
H e n c e  if we set M = max{m(1)  . . . . .  re(no), 1}, it is clear  that  M satisfies the 

desired proper t ies .  

PROOF OF LEMMA 3.7• Assume ,  on the contrary ,  that  for  an x = E~'=~ a,e, there  

is no m satisfying the conclusion of the L e m m a .  Then  for each m ~ N, there  

exists 
s m 

y m =  Z c?e, ,  with li y,. tl -<_ l ,  
i = n + r n + l  

and such that  

(]] X I] 2 + I] ym 112) 1/2 *( [I X + ym I]" 

• . rrt . ~  r r l  
It follows that  x + ym attains its no rm for  some  par t i t ion p z < pT  < • • P k~ so 

that  there  is an index i m <  kin, with p,~ _-< n and p,~+l > n + m. Hence  
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(y,. (p,+,)- " > 

P i ~ + l - P , .  

This last inequality implies that 

We set 

Clearly we have 

WEAKLY STABLE BANACH SPACES 

y,. (p~÷,)2 + x(p~)2 

p ~ . + . - ( n + m )  n + l - p ~  " 

y -  x(p ,2)  0. 

( X ( / )  2 
e = m i n  

t n + l - i  
: l < = i N n ,  x ( i ) / 0 }  , 

a,. = y.. (p,~+,). b,. = p , ~ + , - ( n + m ) .  

c = max{x(/): 1 =< i =< n}, and 

c,. = sgn(am)- c for m E N. 

85 

hence there is /o with 

2 2 
a m  t . (C rtllv a ra to) 

m l . +  b .... < e < e, 
b r a t  o 

a contradiction which proves the claim.) 

Now we observe that  the sequence (b..) also tends to infinity, since 1} y,. 11 --< 1 

and so the sequences (a,.), (b,.), (c,.) satisfy the assumptions of Sublemma 3.8; 

hence there exists an M such that  for all m > M 

C 2 2 
( ,~ + a,~) am 

: < - - + e ,  
m + b , .  bm 

a contradiction proving the Lemma.  

(c,. + a,.) 2 > (y,. (p,Z+.)- x(p,Z)f 
m + b,. " " 

+ 8 .  
> + l + n  - p ~ >  

CLAIM. The sequence t a,. I tends to infinity. 

(If not, there exists a subsequence {a.,}7_-. which is bounded,  say ]a .,] < d for 

I = 1, 2 . . . .  ; then obviously 

lira (c m._.~a-t'- am,) 2 = 0, 
mt + b ,.~ 
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3.9. PROPOSITION. For every sequence ( x~ ) of blocks of ( e~ ), I[ [I ~ 1, there is 

a subsequence ( x j  of (x,)  so that 

. . . . .  

PROOF. We set x~, = x~ and we assume that x,,, x~2,... ,  x~ have been chosen 

so that for k' _-< k the finite sequence x~ , , . . . ,  x~. satisfies the conclusion. We set 

yk = x,, + . . .  + x,k and from Lemma 3.7 there exists mk E N satisfying: 

If Yk=~c~ei ,  a n d y ~ Y w i t h l l y l l  =<1, 
j=l 

s '  

y--- ~ c, ej, thenlly~+yll=(Ifyklr~+lly[p) ~p-. 
/ = $ + ??lk+L 

Choose nk+~, so that x .... = S~=~,cjej, with s~ > s + ink. Then clearly the 

sequence x . . . . . . .  x .... satisfies the inductive assumptions and the proof of the 

proposition is complete. 

3.10. COROLLARY. The space X does not contain isomorphically any lp, 

l = < p < ~ , p ~ 2  or co. 

PROOF. If some of these sequence spaces (Ip, l_-__p<~, p ~ 2 ,  c,,) were 

isomorphically embedded into X, then there would exist sequence (x,) in X 

equivalent to the usual basis of corresponding space (l~, 1 -< p < oo, p ~  2, co). 

Hence by Proposition 3.2, there would exist a sequence (y,), consisting of blocks 

of (e.), also equivalent to the basis of such space (lp, 1 =< p < ~, p ~  2, co). We 

then could get a subsequence (y,,)7=~, so that the conclusion of Proposition 3.9 

would be satisfied. This would contradict the fact that the sequence (y,~)7=z is 

equivalent to the basis of the original space (lp, 1 _<- p < ~, p ~  2, co). The proof of 

the Corollary is now complete. 

3.I1. COROLLARY. The space X does not admit an equivalent norm II1" III so 

that (X, II1" III) is a stable Banach space. 

PROOF. By a result of Guerre-Lapreste [6] (Theorem 1), if X is stable and it 

does not contain l ~, then X is reflexive. The Corollary now follows immediately 

from Corollary 3.10, and Proposition 3.6. 

3.12. PROPOSITION. The space X is weakly stable. 

PROOF. Assume that the space X is not weakly stable. Then it is easily seen 

that there are e >0 ,  sequences (y,),. (x,,) and x ~ X such that 
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weak-lim y,, = O, w e a k - l i m  x .  = x,  
k 

lim Ily. + z II = ~-(z) and 
n 

lim Itx. + z II = , ~ ( z )  for z ~ x ,  and 

lira lim II x° + y.. [I-  lim lim II x. + y.. tl => e. 
n r t l  m n 

Next  we may assume (by Proposi t ion 3.2), by passing if necessary to subse- 

quences,  that there  are sequences (Y,.), (x. - x )  of blocks of (e . )  so that 

l i m l l y . . - ) ~ . , t l = 0  and l i m t l ( x . - x ) - x . - x l l = O .  
m n 

We choose Xo ~ X. such that I1 x , , - x  II < e/4 and x,, = E~=, c,e,. Then  

[ l l x o - 4 - x n - x +  ~ , . l [ - l l x .  + ymll t <~]IXo+Xn--X'q-y. , --(X.  +Ym)ll  

~ll(x,,-x)ll+llx. -x- (x .  - x)ll + IlYm - ym II. 

therefore  there  are no, mo so that for any m > mo, n > no we have 

( . )  
Ilx + x .  - x +  ~m II-IIx,, + ym I1< e / 3 .  

Applying L e m m a  3.7, we get 

l im I1 xo + x.  - x + ym II = (11 x,, + x.  - xll 2 + 7*(0)2) 1/2 
m 

and 

lim ([[ Xo + x.  - xll 2 + ~(o)=) ''= = (ll xoll = + ~ ( -  x )  = + ~(o)=)"=; 
n 

for the same reasons we have 

lim lim Ilxo+ x. - x +  ~m II = (11 xoll 2+ ~ ( -  x ) +  ~-(0)=) "=, 
m n 

There fo re  f rom (*) we get 

lim lim 11 x., + y,~ 11- lim lim II x. + y,. [I < 2e /3 ,  
n m m r t  

a contradict ion.  
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3.13. COROLLARY. For every e > 0, every infinite dimensional  subspace of  X 

contains (1 + e )-isomorphically a copy of  12. 

PROOF. This  fol lows i m m e d i a t e l y  f rom T h e o r e m  1.2, P ropos i t ion  3.12, and  

Coro l l a ry  3.10. 

Qu i t e  ana logous ly  we can p rove  the fol lowing:  

3.14. THEOREM. Let  1 < p < ~. There is an infinite dimensional  Banach  space 

X such that 

(a) X is weakly  stable, 

(b) X does not admit  an equivalent stable norm (hence X is not reflexive), and 

(c) for every e > 0 ,  I p embeds ( 1 +  e)-isomorphically in every infinite d imen-  

sional subspace of  X. 

3.15: QUESTION. W e  do not  know if it is poss ib le  to p rove  the ex is tence  of  a 

Banach  space  X sat isfying the p rope r t i e s  of  T h e o r e m  3.14 with p = 1. O u r  

e x a m p l e  does  no t  he lp  in tha t  d i rec t ion .  
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